x+x^2=123

Simple and best practice solution for x+x^2=123 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+x^2=123 equation:



x+x^2=123
We move all terms to the left:
x+x^2-(123)=0
a = 1; b = 1; c = -123;
Δ = b2-4ac
Δ = 12-4·1·(-123)
Δ = 493
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{493}}{2*1}=\frac{-1-\sqrt{493}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{493}}{2*1}=\frac{-1+\sqrt{493}}{2} $

See similar equations:

| 15=x+0.06+0.15x | | 3p+6+p-10=24 | | 2(3x+5)=-31+11 | | (4n+5)=(n) | | 5(j-13)+2(j-25)=11 | | 23/7=7x | | 4y+12=6y=12 | | 25-3(x+5)=6+6(2-x) | | 25=-4u+7(u+4) | | 16x—35=7x-8 | | -14-y=-2 | | (4x+1)/3=(x+5)/6+(x-3)/6 | | 6(5-8v)+12=-554 | | 7x-19=5x-9 | | -10=2y+6(y-7) | | 6n^2+3n-18=3 | | 3w+2(w+6)=-3 | | 2b+2b-2=10 | | 3x+22=5x+6 | | 6(u+5)-3u=6 | | 4,9t^2-1,5t-1,5=0 | | 4,9t*2-t-1,5=0 | | 5x+18=8x-3 | | 5-(x+6)=2(x+16) | | 3k²=8k+8 | | 4x+12(7+x)=308 | | b+185=−19 | | 3+91x=52x=6 | | X(2x+3)=3654 | | 2-(x-2)=x-(2-2x) | | 2x-2=2x-20 | | 3(x+4)=2x+13= |

Equations solver categories